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On Mordell's Equation y2 - k 
A Problem of Stolarsky 

By Ray P. Steiner 

Abstract. On page 1 of his book Algebraic Numbers and Diophantine Approxima- 
tion, K. B. Stolarsky posed the problem of solving the equation y2 + 999 = x3 in positive 
integers. In the present paper we refine some techniques of Ellison and Pethb and show 
that the complete set of integer solutions of Stolarsky's equation is 

x= 10, y= ?1, 

x = 12, y = ?27, 

x=40, y=?251, 

x = 147, y = ?1782, 

x = 174, y = ?2295, 

and 
x = 22480, y = ?3370501. 

1. In his book Algebraic Numbers and Diophantine Approximation [10, p. 1] 
K.B. Stolarsky posed the following problem and called it one which "a fool can ask 
but a thousand wise men cannot answer": Which integers x, y satisfy the equation 
(1) y2 +999=x3? 

In this paper we shall play the role of "wise man number 1001" and solve Sto- 
larsky's problem completely. We shall prove 

THEOREM 1. The complete set of integer solutions of Eq. (1) is given by 

x= 10, y= is, 

x = 12, y = +27, 

x = 40, y = +251, 

x = 147, y = ?1782, 

x = 174, y = +2295, 

and 
x = 22480, y = +3370501. 

In our solution we shall use some techniques of Ellison [4], [5] and PethM [8], but 
by using a recent sharp result of Waldschmidt [12] on linear forms in logarithms of 
algebraic numbers, we shall show that the bounds of the type derived by Ellison 
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[4], [5] for the solution of totally real cubic Thue equations can be reduced from 
H < 1070 to about H < 1028 or so. Further, in his use of the Davenport lemma, 
Ellison had to use numbers with over 1000 decimal places. Our improved bounds 
enable us to reduce this to about 63 decimal places, thus providing much improved 
execution time. 

We now state without proof the principal theorems used in our work. 

THEOREM 2 (HEMER [6, pp. 15-16]). Let us write the Mordell equation y2 2 

K = x3 as y2 - kf2 = X3, where k is squarefree and (f, X3) is cube free. If 2f 
contains r different primes pi which split in Q(Vk-), i.e., pi = PjPj', and if the class 
number h(Q(vk)) is not divisible by 3, then all the integer solutions of the equation 
y2 - kf2 = can be found by solving the equations 

r r 

J7pqi(+y+ f vi) a = JJha3 

i=1 i=1 

where hi =0 or the least positive integer such that Phi is a principal ideal and 
all combinations of these values are considered. When hi = 0, we put qi = 0, and 
when hi > 0 (and thus h 0 0 (mod 3)) we put qj = hi - 2 if hi _ 1 (mod 3) and 
qi =hi - 1 if hi 2 (mod 3). Here a is an integer in Q(V7k). Further, if k > 0, 

= 1, E, or E', where e is the fundamental unit of Q(x/7). If k < 0 and k #& 3, 
r,=1, and if k = 3, r = 1 or (1 + ?VI)/2. 

THEOREM 3 (WALDSCHMIDT [12]). Let a,... , an be nonzero algebraic num- 
bers and let b1, .. ., bn be rational integers. Let D = [Q(al, a2,... , an)) Q], and 
suppose that ai has defining equation aoxd + * + ad = 0, where (ao,... , ad) = 1. 
Define the measure of ai by 

M(ai) = aO flmax(1, Iuaci), 

where a runs through all embeddings of Q(ai) -+ C, and the absolute logarithmic 
height of ai by 

h(a) log (M(ai)) 

Further, let Vo = 1/D, and Vj > max(h(aj), I log aj I/D, Vj_ p) for 1 < j < n. 
Finally, let E be any number satisfying 

1<E<min {eDVl, mimn 4DVj/llogajl}, 

and let Vj+ = max(Vj, 1) for j = n aid n - 1, with V0+ = 1 if n =1. If the number 
A = bo + b1 log a,? + + bn log an does not vanish then 

JAI > exp[-W(log H + C)], 

where 
W = C(n) Dn+2 V ... Vn (log EDV,+ 1) (log E)-n 

H = max lail, C = log(EDV,+), 

and 
C(1) < 2 , C(2) < 25, C(3) < 2 C(n) < 25 +51n2. 

Note. The statement of Waldschmidt's theorem has been simplified here to the 
case when the bi are rational. The original theorem is stated for the case when bi 
are algebraic. See [12, pp. 257-258] for details. 
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2. We now proceed to the proof of our theorem. We first derive the cubic Thue 
equations corresponding to (1). The equation 

(1) y2 +999=x3 

can be written as 
y2 + 111. 32 = x3. 

Thus f = 3, k = -111, and since -111 _ 1 (mod 8), (2) = P2P2 in Q( -111). 
Further (see, e.g., Borevich and Shafarevich [2, p. 425]) h(Q(-=111) = 8 and 

28 = 5 + 3 v/=m) (1 5 - 3 v/=[f H 

is the least power of 2 dividing into principal ideals. Thus, by Theorem 2, we must 
consider two cases: 

(A) ?y + 3 i ( a+b111=) 

This yields 
a2b-37b3 =8, a= 12, b= -2, 

x = 147, y = ?1782. 

(B) 128(y+3 ~ll) =(5+32 a111)(+ab / 11), 

which yields 
a3 + 5a2b - 333ab2 - 185b3 - 2048. 

Let us put a=x+y, b=y. We get 

x3 + 8x2y - 320xy2 - 512y3 - 2048. 

This yields x _ 0 (mod 8) and if we replace x by 8x we get 

x3 +x2y - 5xy2_ y3 = 4. 

Next, we make the substitution x -* x + y, y -+ x, and get 

-4x3?+ 4xy2 +y3 = 4. 
This implies y even, and making the substitution x -+ -x, y 2y, we finally get 

(2) x3 - 4xy2 + 2y3 = 1. 

This equation has the five solutions 

x=-1, y=-l, 

(2a) xz-, Y-1 

x=-5, y=-3, 

and 
x= -31, y= 14. 

Our goal is now to prove that these are the only integer solutions of (2). Since 
these are the only solutions with Iyj < 14, we assume from now on that IYI > 15. 
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3. Equation (2) defines the cubic field Q(0), where 03 - 40 + 2 = 0. As is easily 
seen, an integral basis of this field is (1, 0, 02). Further, by Voronof's algorithm (see 
Delone and Faddeev [3, Chapter 4]) a pair of fundamental units is 

El = i - 0, E2 = 1 - 20. 

Then Eq. (2) implies that N(x - yO) = 1 and thus that 

(3) x-_yo = (1 O)a,( (1-20)a2 

and we find that 

al = 1, a2 =0 ? x=-1, y=l, 
ai=0, a2=1 x=1, y=2, 

(3a) al = 0, a2 =0 x = 1, y = 0, 
al=5, a2=-2 x = -5, y= 3, 
al = 8, a2 = 1 x = -31, y= 14. 

We must now find all units of the form x - yO, i.e., all binomial units in Q(0). 
By direct search we find that the only binomial units with H < 8 are those listed 
above. Thus from now on we assume H > 9. 

4. In the rest of this paper we shall use the following approximations to 0, 1, 
?2: 

(A) The roots of 03 - 40 + 2 = 0 are given by 

01 - -2.21431974337753519, 
02 - 0.53918887281088912, 
03 - 1.67513087056664607. 

(B) Let Eij denote the jth conjugate of Ei (i = 1, 2). Then ?1 = 1 - 0 satisfies 
the equation ? 3 - 3?2 - E1 + 1 = 0 and, corresponding to the above designations 
for 01, we find 

Eli l 3.21431974337753519, 

E12 - 0.46081112718911087, 
E13 - 0.67513087056664607. 

Further, ?2 = 1 - 20 satisfies the equation ?3 - 322 - 13?2 - 1 = 0, and we have 

?21 - 5.42863948675507038, 
?22 - -0.078377745621778233, 
?23 - -2.35026174113329214. 

5. The purpose of this section is to establish an inequality of the form H < 
Clog II, where C is a constant which can be computed in terms of the conjugates 
of El and ?2. This will be used to compute an upper bound for H and will also be 
essential for the application of Davenport's lemma to our problem. In computing 
C, we will also establish a new lower bound for IYI by using continued fractions. It 
should be noted that all numerical values given in this section and in those that 
follow are only given to a few decimal places. They were actually computed on a 
VAX-780 computer, using the BC multiprecision floating-point package. 

First of all, we define 
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and J'-kI = mini I -yij. Then Eq. (3) yields 

log j-~iyI = ai log leiiI + a2 log 162i , 
log 1-yil = a, log jeijl + a2 log 1J62j 

Let us consider the matrix 

109 logleil 109 IE2il 

V log leijl log 162ij j 

Since det(U) = +R, where R is the regulator of the field, and R # 0, this matrix 
is invertible. Thus, if we set 

U-= Vii V12 
(V21 V22,J 

we certainly have 
ail < (Iviii + Iv12J)maxlog y1iI , 

la2l < (1v211 + Iv22J) miaX I log1 IY 

Thus, on putting H = max(lall, la2l), 

(4) H < N[U-1]miaxIlogj1-|ilI, 

where 
N[U-1] = max(lvil + lvi2l) 

2 

is the row norm of U-1. Finally, we see that the above derivation is independent 
of which i and j we choose. Thus, we may always take i = 1,] = 2. 

For our problem we get 

1.5317081730 1.0176567656 
- 0.4660707691 - 0.70239410571 

and N[U-1] - 2.5493649386. Thus 

H < 2.5494 max I log I Y^i I 

Now let us estimate maxi I log ['yiII. Let IOJ = maxi I9Oil. Then 

max I log [-yi II < mLaxl Ilog lI1iyl + IxIxI1 
2 

Since lOiyl < 9161yl, and Ixl < Ix - OkYl + IkYl < j01jyj + 1, we have 

max I log yti |I| < log(2l10 lyl + 1), 

and 
H < 2.54941og(21Jllyl + 1). 

Next we determine a new lower bound for JyJ by estimating lk in the manner of 
Sprindzhuk [9, pp. 88-89]. We have, on denoting the conjugates of 9 by Sk, Oj, 01, 

lx 
10k -9OJIl? 

X 
O --O 

2 2 y 2 y 
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Since 1LYkI = mini I-yi , we have 

--Ok =min yOi y iy 
Thus 

(5) 2 10k - jl < |- -j 2 ~~y 
for j 7 k. Also, by Eq. (2) factored over Q(O), 

3 

1 IyI3 I||- , > JyI 3 | --Skl-41S- il-II jI0k OjIIOk OII y y 4 

=I kI3 1 1- (Ok)l 

Thus 

] I <- mini I f Iyl-2. 

Here f'(x) = 3X2 - 4, so 

(6) INkI < 1.27885yK- 2 

and 
X | < 1.27885 
y -k 1y 

Further, if IYI ? 2, 1.27885 1 

JyJ3 < 2y2' 
so if (x,y) is a solution of If(x,y)I = 1 with IyI > 3, 1x/yI must be a convergent 
in the continued fraction expansion of one of the I Oil. Using a computer program 
written in the BC multiprecision language, we examined all convergents of the 
IOil with IYI < 1030, and found no solutions except those listed in (3a). Thus IYI > 1030. Finally, we establish the desired inequality. We are searching for K 
satisfying log(2 9llyI + 1) < Klog IyI, i.e., 

21901yl + 1 < IyIK 
where 191-2.2143.... For this it suffices that y|K > 4.42861yl + 1, i.e., |y|K-1 > 
4.4286. Since IYI > 1030 and this relation must hold for all such y, we can take K 
to satisfy (1030)K-1 > 4.4286, which yields K > 1.0215 and 

(7) H < 2.6043 log Iy. 
6. In this section we reduce our problem to consideration of an inequality in 

linear forms in logarithms of algebraic numbers, using some ideas of Sprindzhuk [9] 
and Ellison [5]. We also establish an upper bound in terms of H for the absolute 
value of this linear form. 

First, we eliminate x and y from two of the -yi. We have 

X- OkY = k, X -Ojy =, 

and thus 

X- 
Oik Okj y 

_k - Oj oYjk-kj oYj-Ik 
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Substituting into yi = x - 6hy, and simplifying, we get 

(Ok - Oj) Y - (Ok - = (01 - Oj)hYk 

Dividing by (Ok - O01)yj, we get 

(8) 6obali&2-1 = t Oji -k 1 ~ ~~-Ok 0 Yj' 
where - Oj E 

fi0 _ t 61 =E' 62 = t 
N 0+19, Eij E2j' 

Next, we use this result to derive an upper estimate for l&oa6j 2a2 - 11. We have 

El= 9 - -0.70794281, -1.412543469, 

1 -902 1 
E2= - 2.42398698, - 0.41254347, 

02 - 03 P2 
03 -91 1 E3 = _3 _t -3.42398698, E3 -0.292057185. 

Thus (09 -j)/(k - 01) < 3.42398698. Also, Eq. (5) yields J0k - 9Il < VYai/lYl. 
Thus 

I-YjI > -2 min lk - 9jI > 0.5679709985JyJ. 
So 

ViY3K-1 < 1.7606lyl-1. 
Combining this result with Eq. (6), we get 
(9) J~zlbzaI2a2 - 11 < 7.71yl-3. 

Let us now reduce (9) to an inequality in the linear forms of the logarithms of 
the JIS. First, we note that (7) yields 

lyl-3 < e- 1. 1363H 

Further, we can write (8) as 

&al1&a2 + ?63 +j -01_ Ilk 
1 

~~~Ok - Oj -Yj 

where &3 = -1/do. This equation may be written 

16 alb2a2l = I - 63 + WI) 

which yields 

al log lb, I + a2 log1 2 = log 1'63l1 - W/&3J=logJ 109 I log 10 - w/63J. 

Thus 
lal log JlJI + a2 log2J - log10 3 =I log10 11 - w/63JJ. 

Now we estimate I log 1I - w/63 1. We have 

log 1 - w/b3= Iw/ +w3 + 2 /6+..* < w/3 _ 

the series expansion being justified because 

Jw/631 = ji -91 -Yk < 7.711yl 
3 < 7.71 10-90. 

919Ok -Yj 



710 RAY P. STEINER 

Thus 

Thi s1 - IW/63 - 1 - 7.71. 10 < 1 + 10-88. 
This yields 

I log Ii - w/6311 < (1 + 10-88) exp(2.04251819 - 1.1363H) 
< exp(-0.925H), provided H > 9. 

Thus our final inequality is 

(10) IAI = la, log 16, I + a21og1621 - 1og16311 < exp(-tH) for H > 9, 
where t = 0.925. Now let us show that there are essentially only three inequalities 
here. This will be of importance when we apply Davenport's lemma to our problem 
in Section 8. Then in all future calculations we will choose 62 so that 1621 > 1, i.e., 
log 1621 > 0. First, suppose that k = 1. Then either j = 2, 1 = 3 or j = 3, 1 = 2. If 
I = 2, 1 = 3, we have 

6 =?13 62= ?23 103- 01 
?12 ?22 3 1-= 02 

If k = 1, j = 3, 1 = 2, we have 

?12 = E , 2 = E22 1631 =02 - 01 
E13 ?23 01 03' 

and each quantity in the second case is the reciprocal of the corresponding quantity 
in the first case. So when we take logarithms all signs change and the corresponding 
inequalities are the same. The same result holds if k = 2 or k = 3. 

7. Next, we apply Waldschmidt's theorem to derive a lower bound for JAl in 
terms of H. By comparing this lower bound with the upper bound obtained in 
(10), we will derive an inequality for H, which will yield an upper bound for H by 
solving the corresponding equation. To this end, we first note that the left side of 
(10) is not zero, since if it were, we would have lo6i1a62a2l = 1. This would yield 
606l462a2 = +1. The upper sign is clearly impossible by Eq. (8), while the lower 
sign is impossible by Eq. (9) and the fact that IyI > 1030. Thus we can apply 
Waldschmidt's theorem to our problem. 

Next, by symmetric functions, we find that the equation with roots E1 to E6, 
i.e., that satisfied by all conjugates of 63 is 

37x6 + 111X5 - 210X2 - 605x3 - 210x4 + 111x + 37 = 0. 
Further, we have the following results: 

(a) n = 3, D = 6. 
(b) The leading coefficient of the defining equation for 63 is 37 and the leading 

coefficients of the defining equations for 61 and 62 are both 1 since they are units 
in Q(6o,61,62). 

(c) The absolute values of the Eij are 

? 11 l-6.975318388, ? E 4.761032095, 
?12 ?13 

?13- 1.465092379, ?21- 69.26251125, 
?12 ?22 

?1= 2.309802092, 2 29.98634016. 
?23 ?22 
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This yields 

M(61) - 48.65533275, h(S1) - 0.6474609, 

M(62) - 4797.295465, h(62) -1.412635, 

M(63) - 433.7764127, h(63) - 1.012089. 

We now calculate V? and E. At this point, we must break the calculations into 
three separate cases, depending on the value of k. This is because the 61, 62, 63 

go together in triples; once one is selected, the other two are uniquely determined. 
Since Xi and 1/Si have the same absolute logarithm, we always choose that pair of 
subscripts which make 1621 > 1. We have 

61 El 621 Ok -01 
6i =-, 62 = 63 

Let us now state the results for each case: 
Case 1: k=1, j=2, 1=3, 

61 - -1.465092379, 62 - 29.98634017, 63 ?1.412543469, 

V1 -0.6474609, v2 1.412634599, V3 1.412634599, 
E 9.96936282. 

Case 2: k=2, j=3, 1=1, 

81 -4.761032095, 62 -2.309802092, 63 ?2.42398969, 

V1 - 0.6474609, V2- 1.412634599, V3 1.412634599, 
E 9.95797241. 

Case 3: k=3, j=2, 1=1, 

61 6.9753518388, 62 -69.26251125, 63 ?3.42398699, 

s1 - 0.6474609, V2 - 1.412634599, V3 1.412634599, 
E 8.00000000. 

Thus the conclusion of Waldschmidt's theorem yields 
(A) k = 1 

W 3764230323909806175490609.75753769859021343187, 

C 4.43673261256286621140. 

(B) k = 2 

W 3770753276572308940376986.45810716684223861847, 

C 4.43558941750240920667. 

(C) k = 3 

W 5349838179485936865525116.77553401405923592710, 
C 4.21665748159514026327, 

and, in all cases, 
tH < W(logH + C), 
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i.e., 

(11) H-- W logH- C <0. 
t t 

Now we are searching for an upper limit to the values of H satisfying (11). With 
this in mind, let us choose H > Wit. Then the left side of (11) will be an increasing 
function of H and thus (11) can hold only for H < x, where 

W C x - log x - t = 0. 
t 

If we solve this equation by Newton's method, we find for k = 1, 2,3, respectively, 
that 

(A) H < 2.66. 1026, 

(B) H < 2.67. 1026, 

(C) H < 3.79 1026. 

Thus, in all cases we have H < 3.79. 1026. 

8. We now apply Davenport's lemma to lower the bound for H. First, let us 
state and prove this lemma. 

LEMMA 1 (DAVENPORT). Suppose 0, 3 are given real numbers, M and B are 
rational integers with B > 6, and p, q are rational integers satisfying 1 < q < MB, 
O0q - pl < 2/MB. Let H = max(lbl , lb2 1). Then, if liq031 > 3/B, there is no 
solution of the inequality 

(12) lb0? + b2 - l < K H 

in rational integers b1, b2 with log(B2M)/ log K < H < M, where lixjI denotes the 
distance of x to the nearest integer. 

Proof (Ellison [4]). Let 0 - p/q = w, with IwI < 2/qMB. Then 

1bjqO + b2q - q0I < qKH < MBKH. 

Now q0 = p + wq, so 

lbip + blqw + b2q - q0I < MBKH. 

Since liqidq > 3/B and Jbiqwl < 2Mq/MqB = 2/B, we have 

11biqw - q311 > 1/B. 

Thus 
1/B < |bip + b2q + blqw - q03 < MBK H, 

which yields 

H < log(B2M) 
H logK 

To apply the lemma to our problem we must: 
(1) Reduce each inequality(10) to one of type (12). 
(2) Compute a rational approximation 00 to 0 such that 

10 < S '(MB)2 
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Now let p/q be the convergent with maximal q in the continued fraction expansion 
of 00 such that q K MB, and let p,,?i/q,,+1 be the next convergent after p/q. Then 

jq0o - pl < 

and 

IqOpIq/0Oo?/qo-/<(MB)2 qn~l <MB' 
So we must compute convergents p/q of the continued fraction of Oo for each case, 
find the largest q satisfying q ? MB, and check whether i~q031 ? 3/B holds. If it 
does, we have a new, substantially lower bound for H. If necessary, we can repeat 
the lemma again to lower the bound still more. 

Note. If i~q031 < 3/B we may either raise B or use the procedure of page 11-07 
of [4]. 

Let us now return to (10). We get 

allog 161 I 2 10lo 1621 < exp(-0.925H) for H > 9 
if k = l and k =3, while, if k= 2, 

alog 611l 
_ 

log101621 < 1.1946 exp(-0.925H) ? exp(0.1777738 - 0.925H) 

< exp(-0.9052H) for H > 9. 
Thus, a single inequality which covers all cases is 

(13) aiogb1I0 a 10g163 < exp(-0.9052H) for H >9. 

Now we apply Davenport's lemma. We wrote a computer program, using the BC 
multiprecision language, to expand log I b, I/ log 16b21 in a continued fraction. We used 
the values of 6i found in the calculations of Waldschmidt's theorem and 

M =3.79. 1026,1 B =100, K =exp(0.9052), 
and obtained the following results: 

(A) k = 1 
q = 18834993754709161230417818003, //q011 > 0.435 > 0.03. 

(B) k = 2 
q = 16186572955052016475834643410, //q/31 > 0.226 > 0.03. 

(C) k = 3 

q = 35760418539590009559213204886, l/q/31 > 0.194 > 0.03. 
Thus we now have H < log (B2 M) / log K < 77 for all cases. 
We repeated the lemma a second time with M = 77, B = 500, and found that 

(A) k = 1, q = 37897, //q/3j > 0.040202 > 0.006, 
(B) k = 2, q = 35991, //q/3// > 0.428503 > 0.006, 
(C) k = 3, q = 17371, //q/3// > 0.340584 > 0.006. 

This yields H < 18 in all cases. 
Finally, we searched the range 9 < H K 18 for solutions of (10) and found no 

further solutions in this range. Thus the only remaining possibility is H < 8. For 
this case the only solutions are listed in (3a). Thus the equation y2 + 999 = x3 has 
exactly the solutions given in Theorem 1. 
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9. In conclusion, we note that the method used in the proof of Theorem 1 is 
perfectly general and applies to solving any cubic Thue equation with positive 
discriminant. Indeed, it is even possible to automate the entire solution process. 
In a future article, we shall generalize this method to solving totally real quartic 
Thue equations. 

If we combine the results of this paper with those of Baulin [1] and Ljunggren 
[7] (see also Tzanakis [11]), we now have all integer solutions of the three totally 
real cubic equations with smallest positive discriminant. Let us list these here. 

D Equation Solutions 
49 x3 + x2y - 2xy2 - y3 = 1 (1, 0), (0 1), (-1, 1), (5,4), (4, -9), (-9,5), 

(2, -1), (-1, -1), (-1, 2) 
81 x3 - 3xy2 + y3 = 1 (1,0), (0, -1), (-1,1), (2,1),(-3,2),(1, -3) 
148 x3 - 4xy2 + 2y3 = 1 (-1, -1), (1,0 ), (1, 2), (-5,3), (-31,14) 

Finally, the author wishes to offer his sincere thanks to Professors Josef Blass, 
Andrew Glass and David Meronk, who pointed out a flaw in an earlier version of 
this paper and also showed how the constants computed in Section 5 of that paper 
could be vastly improved. 
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